全球领先的物流服务供应商DHL近日与IBM发布了一份联合报告,对人工智能(AI)在物流行业的发展潜力进行了评估,并揭示了如何更好地应用人工智能实行物流行业变革,增加新智能物流资产,创造运营典范。DHL和IBM阐述了在人工智能的性能、可实现性和成本等方面均实现突破的状况下,物流行业的领导者该如何利用人工智能的核心优势和机会。
该合作报告指明了人工智能对物流行业的影响以及相关应用,认为人工智能有望显著增强人类的能力。人工智能在消费领域已无处不在,语音助手应用的快速增长就是有力的证明。与此同时,DHL和IBM发现人工智能技术正在快速成熟,可以为物流行业带来新的应用,比如帮助物流供应商通过会话式互动来丰富客户体验,甚至能在客户下指令前就开始递送产品。
DHL高级副总裁兼全球创新主管Matthias Heutger表示:“目前的技术、商业和社会状况比以往更适合对物流运作模式转变进行展望和预测。随着人工智能领域技术的飞速发展,我们有责任协同我们的客户和员工,共同探讨人工智能如何塑造物流行业的未来。”
许多行业已成功将人工智能应用于日常业务。比如,在工程和制造行业,人工智能正在生产线中发挥作用,通过图像识别和会话界面来简化生产和维护。在汽车业,通过人工智能来提高自动驾驶汽车自学能力的呼声很高。越来越多的例子证明了人工智能有诸多优势,有能力在改变消费者世界后再改变工业世界。
有了人工智能的帮助,物流行业将把其运营模式从被动行为转变为积极主动的预测模式,花费较少的成本在后台系统、运营和面向客户的活动中产生更好的洞察。例如,DHL开发了一种基于机器学习的工具来预测空运延误状况,以预先采取缓解措施。通过对其内部数据的58个不同参数进行分析,这一机器学习模型能够提前一周对特定航线的日平均通行时间进行预测。此外,它还能确定导致运输延误的主要因素,比如是出发日之类的时间因素,或是航空公司准时率等方面的运营因素,有助于空运代理商提前进行科学计划,而不是只能靠主观猜测。
人工智能技术可以使用先进的图像识别来跟踪货运和资产状况,为运输带来端到端的自主性,或提前预测全球出货量波动。近期中外运-敦豪国际航空快件有限公司获得专利的“小型高效自动分拣装置”就利用了图像识别技术,在进行快件分拣的同时,自动获取数据,并对接DHL的相应系统进行数据上传。显然,人工智能增强了人的能力,也让物流人员从日常工作中解放出来,将工作重点转向更有意义和价值的方向。
就像人工智能目前在消费领域无处不在一样,未来的人工智能将在工业领域得到广泛应用。人工智能致力于将物流行业转变为积极主动、具有预测性、自动化和个性化的行业。有鉴于此,该报告阐述了物流企业如何抓住先机,将人工智能技术应用到全球供应链中的最佳实践与方法。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。