图片来源:Getty
科学家最近开发了一种人工智能(AI)工具,该工具可以让医生确定某人是否会心脏病发作,并且比现有方法更快。
医疗保健公司Abbott发布的新研究表明,Abbott的算法可以令医院事故和急诊部门更准确地识别和治疗心脏骤停患者。
该研究由来自美国、德国、英国、瑞士、澳大利亚和新西兰的研究人员以及超过11,000名患者的共同参与,研究人员发现,AI可以为医生提供更全面的分析,以确定患者心脏病发作的概率。
Abbott高级医疗主管Agim Beshiri表示,“人工智能技术可以考虑许多变量、特征和数据点,并且可以在几秒钟内将它们组合成有意义的结果。”“由于现在计算能力和人工智能应用方面的快速发展,医疗保健可以极大地从这种方法里受益,临床医生每天都在将该方法用于患者。”
该算法由Abbott的医生和统计人员团队开发,通过相关算法和机器学习技术,可以更加个性化地计算一个人的心脏病发作风险。
该算法主要是通过分析广泛的数据集,并纳入年龄、性别和人的特定肌钙蛋白水平(心脏生物标志物)等因素的考虑,从而改善和加快心脏病发作的诊断。
Abbott表示,该算法旨在帮助医生解决在诊断心脏病发作时需要寻找许多个性化信息时存在的两个障碍。
第一个障碍是,国际指南里关于使用高度敏感的肌钙蛋白测试时的要求并没有考虑到个人因素,这会影响测试结果。
第二个障碍是,虽然这些指南建议医生在固定时间里进行肌钙蛋白检测,但并没有考虑一个人的年龄或性别等因素,而是将患者做一刀切式的处理。
而Abbott的算法则与现有方法不同,它考虑了个人因素和各个时间的肌钙蛋白血液测试结果。
Beshiri还表示 ,“世界心脏组织估计每年有1790万人死于心血管疾病,85%的人死于心脏病和中风。”“Abbott算法的独特之处在于,Abbott算法利用了强大的机器学习,可以确定哪些因素对预测某人是否有心脏病发作最有效。”
他称,“这些因素包括一个人的年龄、性别或肌钙蛋白血液测试的状态,当有人出现心脏病发作症状而进入医院时,这些因素的参数已经记录在案了。Abbott的研究发现,该算法有助于了解这些变量在某个时刻是如何相互作用的,所以可以提供更加个性化和精确的计算。”
好文章,需要你的鼓励
DeepSeek 发布了新的大语言模型系列 R1,专为推理任务优化。该系列包括两个主要模型 R1 和 R1-Zero,采用混合专家架构,拥有 6710 亿参数。R1 在多项推理基准测试中超越了 OpenAI 的 o1 模型,而 R1-Zero 则代表了机器学习研究的重大进展。DeepSeek 已在 Hugging Face 上开源了这些模型的源代码。
国家机器人研究中心与 Freshwave 公司合作,利用私有 5G 网络测试农业机器人。这项合作旨在提升农业生产力,预计到 2026 年农业科技产业规模将达到 156 亿英镑。私有 5G 网络将为农业机器人提供高速、低延迟的连接,实现实时数据分析和精准农业操作,有望彻底改变农业生产方式。
Cognizant 推出了神经 AI 多代理加速器和服务套件,旨在帮助企业快速开发和部署 AI 代理。该技术通过预构建的代理网络模板和无代码框架,实现了跨职能的可扩展性和自主决策能力。这一创新有望推动 AI 代理在企业工作流程中的广泛应用,促进人机协作,提升业务效率和适应性。
西部数据公司财务总监Wissam Jabre将于2月28日辞职,恰逢公司分拆为硬盘和固态硬盘两个独立业务。公司正在寻找新的财务总监。尽管面临闪存业务定价环境更具挑战性,公司第二财季收入预计仍将达到43亿美元,同比增长42%。分析师认为硬盘业务表现强劲,可能抵消了闪存业务的部分疲软。