图片来源:Getty
科学家最近开发了一种人工智能(AI)工具,该工具可以让医生确定某人是否会心脏病发作,并且比现有方法更快。
医疗保健公司Abbott发布的新研究表明,Abbott的算法可以令医院事故和急诊部门更准确地识别和治疗心脏骤停患者。
该研究由来自美国、德国、英国、瑞士、澳大利亚和新西兰的研究人员以及超过11,000名患者的共同参与,研究人员发现,AI可以为医生提供更全面的分析,以确定患者心脏病发作的概率。
Abbott高级医疗主管Agim Beshiri表示,“人工智能技术可以考虑许多变量、特征和数据点,并且可以在几秒钟内将它们组合成有意义的结果。”“由于现在计算能力和人工智能应用方面的快速发展,医疗保健可以极大地从这种方法里受益,临床医生每天都在将该方法用于患者。”
该算法由Abbott的医生和统计人员团队开发,通过相关算法和机器学习技术,可以更加个性化地计算一个人的心脏病发作风险。
该算法主要是通过分析广泛的数据集,并纳入年龄、性别和人的特定肌钙蛋白水平(心脏生物标志物)等因素的考虑,从而改善和加快心脏病发作的诊断。
Abbott表示,该算法旨在帮助医生解决在诊断心脏病发作时需要寻找许多个性化信息时存在的两个障碍。
第一个障碍是,国际指南里关于使用高度敏感的肌钙蛋白测试时的要求并没有考虑到个人因素,这会影响测试结果。
第二个障碍是,虽然这些指南建议医生在固定时间里进行肌钙蛋白检测,但并没有考虑一个人的年龄或性别等因素,而是将患者做一刀切式的处理。
而Abbott的算法则与现有方法不同,它考虑了个人因素和各个时间的肌钙蛋白血液测试结果。
Beshiri还表示 ,“世界心脏组织估计每年有1790万人死于心血管疾病,85%的人死于心脏病和中风。”“Abbott算法的独特之处在于,Abbott算法利用了强大的机器学习,可以确定哪些因素对预测某人是否有心脏病发作最有效。”
他称,“这些因素包括一个人的年龄、性别或肌钙蛋白血液测试的状态,当有人出现心脏病发作症状而进入医院时,这些因素的参数已经记录在案了。Abbott的研究发现,该算法有助于了解这些变量在某个时刻是如何相互作用的,所以可以提供更加个性化和精确的计算。”
好文章,需要你的鼓励
Coursera在2025年连接大会上宣布多项AI功能更新。10月将推出角色扮演功能,通过AI人物帮助学生练习面试技巧并获得实时反馈。新增AI评分系统可即时批改代码、论文和视频作业。同时引入完整性检查和监考系统,通过锁定浏览器和真实性验证打击作弊行为,据称可减少95%的不当行为。此外,AI课程构建器将扩展至所有合作伙伴,帮助教育者快速设计课程。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
英国政府研究显示,神经多样性员工从AI聊天机器人中获得的收益远超普通同事。在Microsoft 365 Copilot试点中,神经多样性员工满意度达90%置信水平,推荐度达95%置信水平,均显著高于其他用户。患有ADHD和阅读障碍的员工表示AI工具为他们提供了前所未有的工作支持,特别是在报告撰写方面。研究表明,AI工具正在填补传统无障碍技术未能解决的职场差距,为残障人士提供了隐形的工作辅助。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。