图片来源:Getty
科学家最近开发了一种人工智能(AI)工具,该工具可以让医生确定某人是否会心脏病发作,并且比现有方法更快。
医疗保健公司Abbott发布的新研究表明,Abbott的算法可以令医院事故和急诊部门更准确地识别和治疗心脏骤停患者。
该研究由来自美国、德国、英国、瑞士、澳大利亚和新西兰的研究人员以及超过11,000名患者的共同参与,研究人员发现,AI可以为医生提供更全面的分析,以确定患者心脏病发作的概率。
Abbott高级医疗主管Agim Beshiri表示,“人工智能技术可以考虑许多变量、特征和数据点,并且可以在几秒钟内将它们组合成有意义的结果。”“由于现在计算能力和人工智能应用方面的快速发展,医疗保健可以极大地从这种方法里受益,临床医生每天都在将该方法用于患者。”
该算法由Abbott的医生和统计人员团队开发,通过相关算法和机器学习技术,可以更加个性化地计算一个人的心脏病发作风险。
该算法主要是通过分析广泛的数据集,并纳入年龄、性别和人的特定肌钙蛋白水平(心脏生物标志物)等因素的考虑,从而改善和加快心脏病发作的诊断。
Abbott表示,该算法旨在帮助医生解决在诊断心脏病发作时需要寻找许多个性化信息时存在的两个障碍。
第一个障碍是,国际指南里关于使用高度敏感的肌钙蛋白测试时的要求并没有考虑到个人因素,这会影响测试结果。
第二个障碍是,虽然这些指南建议医生在固定时间里进行肌钙蛋白检测,但并没有考虑一个人的年龄或性别等因素,而是将患者做一刀切式的处理。
而Abbott的算法则与现有方法不同,它考虑了个人因素和各个时间的肌钙蛋白血液测试结果。
Beshiri还表示 ,“世界心脏组织估计每年有1790万人死于心血管疾病,85%的人死于心脏病和中风。”“Abbott算法的独特之处在于,Abbott算法利用了强大的机器学习,可以确定哪些因素对预测某人是否有心脏病发作最有效。”
他称,“这些因素包括一个人的年龄、性别或肌钙蛋白血液测试的状态,当有人出现心脏病发作症状而进入医院时,这些因素的参数已经记录在案了。Abbott的研究发现,该算法有助于了解这些变量在某个时刻是如何相互作用的,所以可以提供更加个性化和精确的计算。”
好文章,需要你的鼓励
谷歌发布新的AI学术搜索工具Scholar Labs,旨在回答详细研究问题。该工具使用AI识别查询中的主要话题和关系,目前仅对部分登录用户开放。与传统学术搜索不同,Scholar Labs不依赖引用次数或期刊影响因子等传统指标来筛选研究质量,而是通过分析文档全文、发表位置、作者信息及引用频次来排序。科学界对这种忽略传统质量评估方式的新方法持谨慎态度,认为研究者仍需保持对文献质量的最终判断权。
Meta公司FAIR实验室与UCLA合作开发了名为HoneyBee的超大规模视觉推理数据集,包含250万训练样本。研究揭示了构建高质量AI视觉推理训练数据的系统方法,发现数据质量比数量更重要,最佳数据源比最差数据源性能提升11.4%。关键创新包括"图片说明书"技术和文字-图片混合训练法,分别提升3.3%和7.5%准确率。HoneyBee训练的AI在多项测试中显著超越同规模模型,同时降低73%推理成本。
Meta发布第三代SAM(分割一切模型)系列AI模型,专注于视觉智能而非语言处理。该模型擅长物体检测,能够精确识别图像和视频中的特定对象。SAM 3在海量图像视频数据集上训练,可通过点击或文本描述准确标识目标物体。Meta将其应用于Instagram编辑工具和Facebook市场功能改进。在野生动物保护方面,SAM 3与保护组织合作分析超万台摄像头捕获的动物视频,成功识别百余种物种,为生态研究提供重要技术支持。
上海AI实验室团队提出ViCO训练策略,让多模态大语言模型能够根据图像语义复杂度智能分配计算资源。通过两阶段训练和视觉路由器,该方法在压缩50%视觉词汇的同时保持99.6%性能,推理速度提升近一倍,为AI效率优化提供了新思路。