人工智能与机器学习在医疗保健领域已经拥有多年实践历程,凭借着对医学及发现技术的重大贡献,二者的业务规模每年都在以惊人的速度增长。
“精准医学”有时也被称为“个性化医学”,在医疗保健领域仍是一个相对较新的概念,但其基本思路多年之前就早已存在。根据美国国家医学图书馆的资料,精准医学是指“一种新兴的疾病治疗与预防方法,其考虑到每个人在基因、环境以及生活方式等方面的个体差异。”
精准医学能够帮助医生考量并采用更加个性化的治疗方法,而不再面向所有患者实施统一的治疗方法,从而确保治疗流程确切匹配病患的具体情况。在确定治疗方案的过程中,医生往往需要查看患者的遗传史、生活地区、环境因素、生活方式以及习惯等等。
借助人工智能技术,精准医学也迈入了新的阶段与高度,能够为患者提供更准确的预测性结论。同时,还有人认为,如果没有机器学习算法支持整个流程,精准医学根本不可能完全实现。
在由Chilmark Research发布一的份报告中,研究人员指出要充分发挥精准医学的潜力,除了以远超人类的速度读取并分析大量医学数据之外,AI技术还能够更准确地给出判结果,包括适用于患者的治疗选项以及可能的治疗结果等重要论断。
在AI的帮助下,我们不仅能够预测治疗效果,甚至有望预测患者未来患病的可能性,这也正是精准医学的一大核心优势。通过更透彻地理解为何发生疾病以及在哪些环境之下更可能产生疾病,人工智能得以帮助并引导医学从业者了解可以根据哪些发病前迹象实现疾病预判。对于医疗行业以及每一位普通人而言,这种提前评估疾病风险的能力无疑是革命性的。
此外,机器学习还有助于改善美国食品药物管理局(FDA)制定的关于测试、药物与药物合成合作关系的法规,进而支撑起更完善的治疗体系。更具体地讲,要全面实现精准医学,我们首先需要在各制药企业、生物技术公司、学术界、诊断机构等参与方之间建立起紧密的协作体系,从而推动创新工作的快速进步。
行业领先的精准医学情报公司Amplion最近发布了Dx: Revenue。这是一套软件情报平台,利用机器学习技术提供与各制药合作方相关的洞察见解。
这套平台覆盖包括临床试验、科学出版物、会议摘要、FDA批准测试、实验室测试以及其他信息的总计3400万个数据源,旨在确保测试服务供应商的能力与制药企业的特定需求相匹配。
Amplion公司CEO Chris Capdevlia表示,“这种能力在癌症领域尤其重要,因为我们正努力将以往千篇一律的匹配方法转化为更具针对性的个性化实施方向,从而根据每一位患者的生物学特征进行治疗。通过这种医疗保健个性化方法,我们不仅能够为患者带来更好的治疗结果,还能够通过降低周期与提高成功率的方式压缩药物开发成本,推动有价值药物的上市速度——这一切都将为患者带来更好的诊疗体验与治愈效果。”
精准医学有望真正改善民众的生活质量,甚至挽救更多生命。而人工智能的应用则能够显著放大这种积极效果。对于众多因目前诊疗费用及医疗保险额度而无法承担高复杂度治疗方法的患者,精准医学与AI技术的结合还能显著降低治疗的成本与享用门槛。诚然,精准医学仍然面临着诸多挑战,但我们相信人工智能的介入将帮助我们不断探索、最终实现这一伟大目标。
好文章,需要你的鼓励
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AI虽具备变革企业洞察力的潜力,但成功依赖于数据质量。大多数AI项目失败源于数据混乱分散而非算法局限。谷歌BigQuery云数据AI平台打破数据孤岛,简化治理,加速企业AI应用。通过AI自动化数据处理,实现实时分析,并与Vertex AI深度集成,使企业能够高效处理结构化和非结构化数据,将智能商业转型从愿景变为现实。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。