数字化几乎颠覆了每一个行业,从金融服务到医疗保健,而食品和饮料行业也不例外。从历史上看,风味特点、潮流和新的食品主要归功于厨师和产品开发人员。而在将一个创意转化成产品并推向市场之前,可能需要花费几个月甚至是几年的时间。
但是,在最近几年之中,下一个大的食品和风味潮流的答案与人类的关系越来越小,而与大数据和人工智能的关系越来越大。通过同时收集和分析数百万种数据集,它们可以学习和模仿人类的行为。
那么,如何利用技术开发出下一个潮流或者趋势?举个例子,香料公司McCormick在2019年与IBM合作,利用人工智能技术预测新的风味组合。他们分析了来自数百万个数据源的数据,通过这种方法改进McCormick的“风味预测”。结果是双方合作开发出了不少能够吸引消费者注意的新风味,McCormick内部的产品开发人员通常不会自己想出这些不断涌现的新风味。
该公司甚至有一个专门的Instagram页面来展示其新开发的、值得注意的口味。比如它新创的XO酱,就是一种调味品、酱料和糊剂的组合。
另一个用例是Aromyx,这是一家将人的味觉和嗅觉数字化的公司。该公司开发了“创建气味感测数据的数字表示形式”的生物传感器,可以用于消费品、农业等领域。而对这种技术的兴趣和需求,让该公司去年完成了300万美元的资金募集。
除此之外,世界上最大的在线食品和配料数据库之一Foodpairing,也利用机器学习向厨师和调酒师推荐新的食品和饮料组合,并帮助食品公司确定下一步应该推出哪种口味的产品。
当然,这些只是利用人工智能和消费者数据的力量来创造新趋势并吸引新客户群的几家企业的例子。那么,这对于食品和饮料行业的未来意味着什么呢?毫无疑问,大数据和人工智能为创新提供了充足的机会。利用人工智能技术,品牌商可以:
随着新技术的不断普及,那些希望在竞争中保持领先地位,不断吸引新客户并保持盈利的食品和饮料生产商应该采用人工智能和机器学习技术,并将其应用于市场调研和产品开发策略,这才是明智之举。而不这样做的话,风险会大到不容忽视的程度。
好文章,需要你的鼓励
在技术快速发展的时代,保护关键系统越来越依赖AI、自动化和行为分析。数据显示,2024年95%的数据泄露源于人为错误,64%的网络事件由员工失误造成。虽然先进的网络防御技术不断发展,但人类判断仍是最薄弱环节。网络韧性不仅是技术挑战,更是人员和战略需求。建立真正的韧性需要机器精确性与人类判断力的结合,将信任视为战略基础设施的关键要素,并将网络韧性提升为国家安全的核心组成部分。
南洋理工大学团队开发了Uni-MMMU基准测试,专门评估AI模型的理解与生成协同能力。该基准包含八个精心设计的任务,要求AI像人类一样"边看边想边画"来解决复杂问题。研究发现当前AI模型在这种协同任务上表现不平衡,生成能力是主要瓶颈,但协同工作确实能提升问题解决效果,为开发更智能的AI助手指明了方向。
自计算机诞生以来,人们就担心机器会背叛创造者。近期AI事件包括数据泄露、自主破坏行为和系统追求错误目标,暴露了当前安全控制的弱点。然而这种结果并非不可避免。AI由人类构建,用我们的数据训练,在我们设计的硬件上运行。人类主导权仍是决定因素,责任仍在我们。
360 AI Research团队发布的FG-CLIP 2是一个突破性的双语精细视觉语言对齐模型,能够同时处理中英文并进行精细的图像理解。该模型通过两阶段训练策略和多目标联合优化,在29个数据集的8类任务中均达到最先进性能,特别创新了文本内模态对比损失机制。团队还构建了首个中文多模态评测基准,填补了该领域空白,为智能商务、安防监控、医疗影像等应用开辟新可能。