2022年9月,美国商务部表示,将从CHIPS法案中划拨500亿美元以补贴美国本土的芯片工厂建设与芯片产品研发项目。就在本月,美国再次出台推动美国制造业回迁本国的相关政策,为此,众多美国企业纷纷开始在美国本土投资建厂。
据悉,英特尔计划斥资200亿美元在俄亥俄州新奥尔巴尼建设一座制造工厂,预计这处设施将在2025年投入运营,并将成为全球规模最大的芯片制造基地之一。台积电和三星也官宣在美建厂,其中三星宣布将在2024年于得克萨斯州建设一处价值170亿美元的芯片工厂。
与此同时,人工智能(AI)与机器学习(ML)也在加强对半导体行业的影响,二者正在以我们难以想象的方式提高运算效率。在如今这个高度自动化的时代,AI与数字孪生技术已经在一起推动芯片设计与制造流程,进而帮助我们快速弥合算力供需之间的差距。
作为物理对象及过程的实时数字化虚拟映射,数字孪生自从2010年在NASA被首次用于改进航天器的物理模拟以来,已经迎来了喜人的发展态势。
如今的数字孪生技术能够帮助芯片制造商在满负荷运转的同时提高制造效能,同时确保生产体系不会发生任何中断。LAM Research、博世(已经在德国一处半导体工厂内使用数字孪生)和Applied Materials(材料工程领域的领军企业,生产各类新型芯片和先进显示器)等厂商已经开始部署基于机器学习的数字孪生模型,不仅模拟效果更加准确,速度也是传统物理模拟的上百万倍。
Tignis、AspenTech和Ansys等科技初创公司也在积极做出探索,尝试利用数字孪生优化工业运营,将AI与机器学习引入到广泛的应用场景中。
随着AI开始在流程控制与流程建模当中发挥关键作用,进而被应用于工程仿真的几乎各个层面,整个制造业也有望在产量、质量和吞吐能力方面迈上新的台阶,甚至迎来一轮颠覆性升级。
事实证明,数字孪生建模确实能够在芯片制造流程中发挥巨大价值,助力设计与生产流程的简化,同时大大降低对于物理设计原型的依赖。
但必须承认,尽管已经有部分芯片制造商在利用数字孪生建立开发模型,但这项技术在生产优化上的通用性还非常有限,不过,这项技术在芯片制造上仍然有很大的潜在发展空间:
通过在云端重建物理系统,制造商可以从中发现关键模式并扩大产能水平,而且使整个过程纯靠虚拟仿真,直接消除了由传统模拟带来的一切风险。
随着宏观经济震荡带来的巨大压力,数字孪生技术可能将彻底改变芯片设计商、代工厂商和消费者的思维模式。
好文章,需要你的鼓励
当AI遇到空间推理难题:最新研究揭示GPT-4等顶尖模型在传送门解谜和立体拼图中集体"挂科",复杂智能远比我们想象的更难实现。
这项研究首次系统评估了AI代码智能体在科学研究扩展方面的能力。研究团队设计了包含12个真实研究任务的REXBENCH基准,测试了九个先进AI智能体的表现。结果显示,即使最优秀的智能体成功率也仅为25%,远低于实用化要求,揭示了当前AI在处理复杂科学推理任务时的显著局限性。
2025施耐德电气智算峰会上,全新EcoStruxure(TM) Energy Operation电力综合运营系统正式亮相,定位场站级智慧能源管理中枢,集技术领先性与本土适配性于一体。
俄罗斯莫斯科国立大学研究团队开发出MEMFOF光流估计新方法,在保持顶尖精度的同时将1080p视频分析的GPU内存消耗从8GB降至2GB,实现约4倍内存节省。该方法通过三帧策略、相关性体积优化和高分辨率训练在多个国际基准测试中取得第一名成绩,为高清视频分析技术的普及奠定基础。