融合多种技术为运动员身体机能创建数字副本,有望提前发现机能隐患、有效预防运动损伤。
澳大利亚篮球运动员Maddison Rocci一动不动地站在电影制片厂内,100多台摄像机正对准她身体的各个部位。百叶窗咔嗒关闭之后,她站起并张开双臂。镜头背后,则是一群曾多次与好莱坞导演合作的电影制作人。但这次他们的工作有所不同,合作对象变成了科学家。
在拍摄完毕之后,格里菲斯大学生物医学与康复工程中心(GCORE)的生物力学工程师和软件开发团队,将配合Myriad Studios和naughty Monkey的电影动画师们,一同根据Rocci的身体数据创建数字孪生,由内而外重现她的机体结构。
这就是所谓“数字运动员”。借助3D身体扫描、磁共振成像(MRI)和运动捕捉数据,副本详尽呈现了Rocci在运动环境中的身体形态、骨骼、关节、肌肉和其他软组织。科学家们现在能在她奔跑、跳跃、转身和投篮时,清晰看到身体内部的变化情况。肌肉与关节压力数据被实时捕捉,以供教练设计出更科学的训练程序或调整技战术动作。
那么,科学家们是如何构建数字孪生的?
例如,教练可以实时检查Rocci或其他运动员的侧步动作。正是这种常见动作,极易导致膝关节前交叉韧带发生损伤。这些信息既即时又反映运动员的个体特征,这一点非常关键。因为每位运动员都具有独特的生理机能,所以压力水平会各有不同。
要想维持关节组织的健康并/或修复关节组织,需要“理想的”组织负荷与应变方法。最近的研究表明,这种“生物反馈”技术能够将患者的数字孪生副本同运动捕捉、无线可穿戴设备匹配起来。个性化数字孪生能够把特定对象的运动拆分成更小、可以预测的动作,再通过神经肌肉骨骼刚体模型、实时编码优化以及人工智能(AI)或机器学习方法进行处理。
最近的工作还表明,实验室条件下的生物力学测量与建模完全具备实际应用的可能,而且只需少量可穿戴传感器或计算机视觉方法即可进行。也许在不久的将来,这项技术能够全面商业化,带来成本低廉的可用版本。
长期以来,在现实场景中实时、无创地准确预测内部组织负荷,一直是生物力学领域的至高难题。随着数字孪生技术的发展,基于运动员肌肉骨骼特征的数字孪生将很快发展成熟,并作为生物反馈系统指导运动员的训练与复健方案。
实时视觉生物反馈具有强大的指导性作用,能帮助运动员灵活调整原有训练方案或教练指示中的膝盖及臀部动作。根据指引,患者将逐步改变自己的运动习惯,在临床层面显著改善髋关节疼痛和运动功能。
除了优化运动表现之外,由此建立的数字孪生模型还拥有其他潜在应用,包括面向军人和残障人士——例如预防士兵群体中常见的肌肉骨骼损伤,以及帮助脊髓损伤患者实现神经康复。
目前,名为BioSpine的完整集成系统正基于增强现实技术进行训练和试验,其目标是帮助脊髓受损的病患也能在元宇宙中正常走动,或者配合肌肉电刺激和运动辅助恢复身体机能循环。通过这种方式,人将以思想控制的方式在增强现实环境中获得渲染式体验。随着后续发展,这项技术有望帮助四肢瘫痪和截瘫患者重新“站起来”。
好文章,需要你的鼓励
P1.AI创始人保罗·埃雷门科正用合成数据训练AI设计物理系统,从住宅冷却到星际飞船,突破工程AGI的终极瓶颈——数据稀缺。他的AI工程师Archie已能像人类一样处理多物理场任务,目标是让机器设计人类无法想象的复杂系统。
波士顿大学研究团队开发的DORI基准测试从四个维度评估多模态大语言模型的物体方向理解能力:正面对齐、旋转变换、相对方向和规范方向感知。研究评估了15个最先进模型,发现即使最佳模型在粗粒度任务上的准确率也仅为54.2%,在细粒度方向判断上更低至33.0%,与人类表现相差近30%。结果表明当前模型在精确角度估计、多视角追踪和理解复合旋转方面存在系统性缺陷,反映了它们内部3D空间表示的根本局限,为未来模型设计提供了明确方向。
这篇研究介绍了Oracle AI团队开发的一种针对企业系统的域特定检索硬负样本挖掘框架。该方法通过整合多种嵌入模型、降维处理和独特的语义选择标准,动态识别具有挑战性但上下文无关的文档作为训练样本,显著提升了重排序模型的性能。在云服务领域的测试中,该方法在MRR@3和MRR@10指标上分别提升了15%和19%,并在多个公开领域数据集上展示了广泛适用性,为企业搜索和检索增强生成应用提供了实用解决方案。
Oracle研究团队开发了FS-DAG,这是一种用于视觉丰富文档理解的少样本领域适应图网络模型。与传统大型模型不同,FS-DAG仅需5份示例文档即可适应新文档类型,参数量不到90M,却在信息提取任务中表现卓越。模型采用模块化架构,结合预训练的文本和视觉特征提取器与图神经网络,展现出对OCR错误的极强鲁棒性(性能下降不到1%)。实验表明,FS-DAG在多种文档类型上优于LayoutLMv2等大型模型,同时具有更短的训练和推理时间。目前已被50多家企业采用,每月处理超过100万次API调用,证明了其在实际业务场景中的价值。