最新文章

地瓜机器人完成1亿美元A轮融资,加速构建具身智能生态版图

地瓜机器人率先构建从芯片、算法到软件的全栈产品体系,形成 5~500TOPS完整产品布局。

语音无需语音:Menlo Research团队为低资源语言开发的创新语音指令训练方法

语音无需语音:Menlo Research团队为低资源语言开发的创新语音指令训练方法

这篇研究论文介绍了"Speechless",一种创新方法,可以在不使用实际语音数据的情况下训练语音指令模型,特别适用于越南语等低资源语言。研究团队通过将文本指令转换为语义表示,绕过了对高质量文本转语音(TTS)系统的依赖。该方法分三个阶段:首先训练量化器将语音转为语义标记;然后训练Speechless模型将文本转为这些标记;最后用生成的合成数据微调大型语言模型。实验表明,该方法在越南语ASR任务中表现出色,为低资源语言的语音助手开发提供了经济高效的解决方案。

变革性进化:Transformer Copilot——用学习错误日志提升大语言模型的微调质量

变革性进化:Transformer Copilot——用学习错误日志提升大语言模型的微调质量

《Transformer Copilot》论文提出了一种革命性的大语言模型微调框架,通过系统记录和利用模型训练过程中的"错误日志"来提升推理性能。研究团队受人类学习者记录和反思错误的启发,设计了一个"副驾驶"模型来辅助原始"驾驶员"模型,通过学习错误模式并在推理时校正输出。这一方法在12个基准测试上使模型性能提升高达34.5%,同时保持计算开销最小,展现了强大的可扩展性和可迁移性,为大语言模型的优化提供了全新思路。

RIPT-VLA:用简单奖励让机器人更聪明!德克萨斯大学Austin分校开创视觉-语言-动作模型的互动式后训练新范式

RIPT-VLA:用简单奖励让机器人更聪明!德克萨斯大学Austin分校开创视觉-语言-动作模型的互动式后训练新范式

德克萨斯大学Austin分校的研究团队提出了RIPT-VLA,一种创新的视觉-语言-动作模型后训练范式。该方法通过让AI模型与环境互动并仅接收简单的成功/失败反馈来学习,无需复杂的奖励函数或价值模型。实验证明,RIPT-VLA能显著提升现有模型性能,在轻量级QueST模型上平均提升21.2%,将大型OpenVLA-OFT模型推至97.5%的前所未有成功率。最令人惊叹的是,仅用一个示范样本,它就能将几乎不可用的模型在15次迭代内从4%提升至97%的成功率,展现出卓越的数据效率和适应能力。

时间洞察:北京大学和华为诺亚方舟实验室联合打造真实场景下大语言模型时间推理的多层级基准

时间洞察:北京大学和华为诺亚方舟实验室联合打造真实场景下大语言模型时间推理的多层级基准

北京大学与华为诺亚方舟实验室研究团队共同开发了TIME基准,这是首个专为评估大语言模型在真实世界场景中的时间推理能力而设计的多层级基准。该研究提出了三个层级的时间推理框架,包含11个细粒度任务,并构建了涵盖38,522个问答对的数据集,针对知识密集型信息、快速变化的事件动态和社交互动中的复杂时间依赖性三大现实挑战。实验结果表明,即使是先进模型在构建时间线和理解复杂时间关系方面仍面临显著挑战,而测试时扩展技术可明显提升时间逻辑推理能力。

正交残差更新:为深度网络提供稳定高效的更新机制

正交残差更新:为深度网络提供稳定高效的更新机制

这篇研究论文提出了一种称为"正交残差更新"的新方法,解决了深度神经网络中标准残差连接的局限性。研究人员发现,在传统残差连接中,模块输出与输入流直接相加可能导致冗余特征学习。他们的创新方法将模块输出分解为平行和正交两个组件,仅保留正交部分进行更新,促使网络学习更丰富的特征表示。在ResNetV2和Vision Transformer等架构上的实验证明,这种简单修改显著提高了模型准确率和训练稳定性,在ImageNet-1k数据集上使ViT-B模型的表现提升了4.3个百分点。

顽固的智能:KAIST研究团队揭示大型推理模型如何任性"修改"用户指令

顽固的智能:KAIST研究团队揭示大型推理模型如何任性"修改"用户指令

韩国科学技术院(KAIST)的研究团队发现了大型语言模型中一个令人担忧的现象:"推理刚性"。这种现象表现为即使是最先进的AI模型,如GPT-4o或Qwen3,也会在解决问题时固执地坚持熟悉的推理模式,甚至会"修改"用户明确给出的条件。研究人员创建了ReasoningTrap诊断数据集,揭示这种行为可分为三类:解释过载、输入不信任和部分指令关注。令人惊讶的是,专门为复杂推理训练的模型比基础模型表现出更强的"固执"倾向,这提醒我们在追求AI推理能力的同时,不应忽视其遵循指令的灵活性。

旋转位置编码之舞:比尔肯特大学研究团队开创无需训练的视频动作迁移新技术

旋转位置编码之舞:比尔肯特大学研究团队开创无需训练的视频动作迁移新技术

比尔肯特大学研究团队提出RoPECraft,一种无需训练的视频动作迁移方法,通过巧妙操作扩散变换器中的旋转位置编码实现。该方法首先从参考视频提取光流信息,用于扭曲RoPE张量;再通过流匹配优化和相位约束正则化,确保生成视频精确跟随参考动作,同时保持视觉质量。与需要大量计算资源的现有方法相比,RoPECraft不需要模型再训练,大幅降低了计算成本,同时在动作保真度和视频质量上超越了最新技术,为AI视频创作提供了高效可行的动作控制解决方案。

修复"伤害"模型表现的数据:级联LLM技术重标注负面样本,提升信息检索的稳健性

修复"伤害"模型表现的数据:级联LLM技术重标注负面样本,提升信息检索的稳健性

这项来自加拿大滑铁卢大学的研究挑战了"更多训练数据总是更好"的观念,发现某些数据集反而会损害信息检索模型性能。研究者提出了RLHN方法,使用级联LLM技术识别并重标注训练数据中的"假负样本"。实验表明,这种方法显著提升了检索和重排模型在BEIR和AIR-BENCH基准测试上的性能,尤其在处理未见过的领域时效果更佳。人类验证结果证实了该方法的可靠性,为构建更准确、鲁棒的信息检索系统提供了新思路。

WebAgent-R1:通过端到端多回合强化学习训练网页智能体

WebAgent-R1:通过端到端多回合强化学习训练网页智能体

这项研究介绍了WebAgent-R1,一种用于训练网页智能体的端到端多回合强化学习框架。不同于传统方法,它直接通过在线交互学习,仅依靠二元任务成功奖励信号指导。实验表明,该方法显著提升了Qwen-2.5-3B和Llama-3.1-8B模型的网页任务成功率,超越了现有最先进技术。研究还揭示了行为克隆的重要性、思考型提示策略的有效性,以及通过增加交互次数来实现测试时性能扩展的新策略。

Think-RM:用长程思考推理提升生成式奖励模型的全新思路——来自乔治亚理工和亚马逊的联合研究

Think-RM:用长程思考推理提升生成式奖励模型的全新思路——来自乔治亚理工和亚马逊的联合研究

Think-RM是一项创新研究,通过使奖励模型具备"长程思考"能力来提升AI系统对人类偏好的理解。传统的奖励模型要么仅提供分数(BT RM),要么依赖浅层思考(GenRM),而Think-RM则模拟人类深度分析问题的过程,支持自我反思、假设推理和发散思维。实验表明,这种方法在复杂推理任务上显著优于现有方法,在RM-Bench上提升8%。结合创新的配对式RLHF流程,Think-RM不仅拓展了奖励模型设计空间,还为AI系统与人类期望的更精准对齐提供了新范式。

在欧洲之门马德里,我们再次见证了SAP激活企业增长的“飞轮”
2025-05-28

在欧洲之门马德里,我们再次见证了SAP激活企业增长的“飞轮”

SAP全球CEO柯睿安(Christian Klein)在马德里蓝宝石大会拿出了 “飞轮效应”理论,讲述起企业如何通过AI、数据和应用协同驱动,释放持续增长动能。

SAKURA:探索大型音频语言模型如何"听懂"并"思考"——首个评估音频多跳推理能力的基准测试

SAKURA:探索大型音频语言模型如何"听懂"并"思考"——首个评估音频多跳推理能力的基准测试

台湾国立大学研究团队开发了SAKURA,首个专门评估大型音频语言模型多跳推理能力的基准测试。研究发现,即使最先进的模型也面临两大挑战:一是在识别某些音频属性(如情绪)时准确率不高;二是即使能正确识别音频信息,也难以基于这些信息进行多步推理。对比实验显示,当同样的信息以文本形式提供时,模型推理能力显著提升,表明当前模型未能有效整合音频表征进入推理过程,这为未来开发真正能"听懂并思考"的AI系统提供了重要方向。

用形式验证工具训练推理验证器:宾夕法尼亚州立大学研究团队让AI自动检查每一步推理是否正确

用形式验证工具训练推理验证器:宾夕法尼亚州立大学研究团队让AI自动检查每一步推理是否正确

这项由宾夕法尼亚州立大学研究团队开发的FOVER方法解决了AI推理验证器训练中的两大难题:数据标注成本高和应用范围有限。研究者利用形式验证工具(如Z3和Isabelle)自动检查AI在形式逻辑和定理证明任务中的每一步推理是否正确,创建了高质量的训练数据集。令人惊喜的是,经过这种训练的验证器不仅无需人工标注数据,还能泛化到各类推理任务,在12个不同基准测试中表现优异,甚至在某些任务上超越了使用人工标注训练的验证器。这为提高AI推理能力提供了一条高效、通用的新途径。

多空间理解新突破:Meta研究团队打造多帧空间理解的多模态大语言模型

多空间理解新突破:Meta研究团队打造多帧空间理解的多模态大语言模型

这篇研究介绍了Meta团队开发的Multi-SpatialMLLM,一种能够理解多帧图像空间关系的多模态大语言模型。研究者创建了首个大规模多帧空间理解数据集MultiSPA,包含超过2700万个样本,并在此基础上训练模型掌握深度感知、视觉对应和动态感知能力。实验表明,该模型显著超越了现有系统,在空间理解任务上平均提升36%,并展示出多任务协同效应和能力涌现现象,为机器人学习等实际应用提供了新的可能性。

RAVENEA: 哥本哈根大学团队开创多模态检索增强视觉文化理解新基准

RAVENEA: 哥本哈根大学团队开创多模态检索增强视觉文化理解新基准

RAVENEA是哥本哈根大学研究团队开发的首个多模态检索增强视觉文化理解基准,集成了超过10,000份人工标注的维基百科文档,用于评估视觉语言模型的文化敏感性。研究发现,轻量级视觉模型在配备文化感知检索功能后,在文化视觉问答和图像描述任务上分别提升了至少3.2%和6.2%的性能,证明了检索增强方法在提升AI文化理解能力方面的有效性,为构建更具文化包容性的视觉AI系统开辟了新路径。

安全交易也能抗风险:斯科尔科沃研究团队的伊塔库拉-赛托损失函数突破性研究

安全交易也能抗风险:斯科尔科沃研究团队的伊塔库拉-赛托损失函数突破性研究

斯科尔科沃科技学院研究团队开发了一种新型损失函数——基于伊塔库拉-赛托散度的损失函数,用于解决风险敏感强化学习中的数值不稳定性问题。与传统方法相比,该损失函数不仅数值稳定,还保持尺度不变性,同时保留指数效用的理论保证。研究团队在多种金融场景和鲁棒组合优化问题上验证了其优越性,表明该方法可有效应用于金融、医疗和自动驾驶等高风险决策领域。

Nvidia 与瑞典财团合作:AI 工厂重新定义经济

Nvidia 与瑞典财团合作:AI 工厂重新定义经济

本文介绍了 AI 工厂如何通过整合芯片制造、超级计算及数据中心部署,推动全球企业转型升级。文中详细阐述了 NVIDIA 与国际伙伴在技术创新、产业变革和可持续发展方面的探索与挑战。

VAST Data 挑战企业 AI 工厂

VAST Data 挑战企业 AI 工厂

VAST Data 推出了一款集成 AI 操作系统,通过整合存储、实时数据处理、向量数据库和原生代理编排等功能,旨在简化复杂的 AI 基础设施部署。该方案有望降低部署难度及延时,但其与 Nvidia 深度绑定以及封闭式整合可能限制使用弹性,面临开放模块化生态系统的挑战。

SpaceX 第九次 Starship 测试飞行升空进入太空,最终陷入旋转

SpaceX 第九次 Starship 测试飞行升空进入太空,最终陷入旋转

SpaceX 在第九次 Starship 测试飞行中实现了与 Super Heavy 助推器的成功分离并进入轨道,但随后失控旋转,导致不受控重返大洋。试飞虽展现技术进步,却也暴露出复飞中的问题,促使公司进行硬件改进。