作为全球化妆品与美容护理业巨头,大家对于巴黎欧莱雅公司应该不会感到陌生。但是,这家公司在研究、创新与技术方面的探索同样硕果累累。事实上,自2012年以来,欧莱雅一直经营着自己的科技孵化器项目,整个集团的运营方式与初创企业非常相似,只不过仍然以美容与技术的交汇点作为主干思路。下面,我们将共同了解该公司的孵化器项目,以及包括皮肤数字化诊断在内的一系列AI应用方向。
欧莱雅公司的首个孵化器实验室建于新泽西州,此后又陆续在旧金山、巴黎以及东京开设了其它实验室。这些实验室专注于少数特定产品——例如结合应用、可穿戴设备以及配套装置,共同实现化妆器械联网并以定制化调整满足客户的特定需求。各孵化器实验室与企业家及学术界能力合作,致力于利用技术开发出最新、最好的产品。
2015年,孵化器项目推出了Makeup Genius,这是一款移动应用,允许客户在购买产品之前借助增强现实技术看到自己面部使用产品后的颜色与妆容效果。客户只需要上传自己的面部图像,或者直接使用自己设备上的相机,即可体验化妆品或者随时更换不同的发色。在应用当中,客户还可以利用滑动功能比较产品使用前后的差别。
孵化器项目推出的另一款产品,是通过与智能技术制造商Withings and Kérastase(欧莱雅公司的高端护发品牌)合作开发,旨在帮助消费者更轻松地养护头发。这款发梳上配备有电导率传感器、加速度计、陀螺仪、麦克风、蓝牙以及Wi-Fi连接,用以收集技术指标并将其上传至算法处。算法能够利用这些信息提供关于用户头发最佳护理方式的个性化产品使用建议。
除了传感器、相机以及激光器之外,IBM的Watson物联网平台也为欧莱雅带来了能够应对工业40相关挑战与机遇的新型生产设施。如今,客户的要求越来越高——他们希望有最适合自己的配方解决具体问题,或者满足个人喜好。而IBM技术的介入,帮助欧莱雅的生产设施迎来更高的响应能力与敏捷性,有望逐步满足这些韧性于个人的需求。
为了在会话当中贯彻欧莱雅公司的营销信念,美妆巨头还与Automat Technolgies合作推出了Facebook Messenger Bot,用于同客户进行更具个性化的对话(并最终促成销售)。该聊天机器人由人工智能驱动,能够以对话的方式与客户沟通,并引导消费者在轻松交流之余表达自己的个人偏好。该公司首席数字官Lubomira Rochet在采访中表示,“我坚信AI技术与互联网本身一样伟大。”
简化招聘与雇用流程
欧莱雅公司还将人工智能引入自身招聘与雇用流程当中。作为一家每年开放约15000个职位的大型企业,欧莱雅需要处理近百万份申请,因此其开始尝试利用AI技术帮助员工摆脱令人头痛的简历筛选。Mya是一款聊天机器人,它能够处理候选人提出的问题,从而在招聘早期帮助欧莱雅节约大量宝贵的时间。此外,它还能够检查各项重要细节,例如求职者是否尚未找到工作,以及签证的当前状态等。接下来,求职者需要面对Seedlink,这款AI软件负责评估他们在开放式面试问题中给出的答案。这款工具能够找到在简历审阅过程中被忽略的求职者。该公司招聘人员表示,在一次从12000名候选人中选出80名实习生的过程中,该软件帮助他们节约了200个小时的工作时间。
通过对AI/AR厂商ModiFace公司的收购,欧莱雅如今获得了通过现场视频提供美容产品试用模拟的新型技术工具,可为客户提供皮肤诊断方案。在收购当中,Rochet通过声明指出,“凭借着收购ModiFace,我们开启了欧莱雅公司的第二阶段数字化转型,即专注于通过语音、AR以及AI等技术重塑美容体验。”
利用深度学习技术,该工具利用ModiFace的AR功能配合欧莱雅的照片数据库、皮肤老化专业知识与皮肤老化映射集,能够在女性消费者将自拍照上传至公司网站后提供个性化的产品使用指导。在2019年初以Vichy SkinCounsultAI产品的形式在加拿大推出之后,这套方案将在今年年内实现全球上市。
相信欧莱雅公司将继续利用人工智能与其它新兴技术发挥自身竞争优势,努力保持自身在产品个性化领域的前沿地位,同时最大程序发挥技术成果对美容行业的驱动作用。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。