案例名称:【业财税一体化项目推动集团财税管理转型升级】
公司名称:【山东高速集团有限公司(600350)】
案例简述:
互联网+的发展、数字中国建设战略,使数字技术正在颠覆传统商业发展,数字技术与实体经济深度融合赋能传统产业转型升级。
本项目案例为了实现财税管理的标准化与规范化、加强集团管控,提升开票、受票服务和风险管理能力,运用大数据、人工智能、机器语言等技术,通过业财税一体化项目建设推动集团税务管理向数智化转型升级,实现集团精准核算,以票控税,高效合规,全面提升票、财、税、档一体化管理水平为建设目标,积极探索集团绿色可持续发展、数字经济发展的转型之路,同时为传统行业提供了数字化转型的案例参考,助推产业升级、助力“碳中和”、“碳达峰”目标实现,为建设新时代现代化强省作出新的更大贡献。
扫码查看详细案例
好文章,需要你的鼓励
DeepResearchGym是一个创新的开源评估框架,专为深度研究系统设计,旨在解决当前依赖商业搜索API带来的透明度和可重复性挑战。该系统由卡内基梅隆大学研究团队开发,结合了基于ClueWeb22和FineWeb大型网络语料库的可重复搜索API与严格的评估协议。实验表明,使用DeepResearchGym的系统性能与使用商业API相当,且在评估指标间保持一致性。人类评估进一步证实了自动评估协议与人类偏好的一致性,验证了该框架评估深度研究系统的有效性。
这项研究介绍了FinTagging,首个面向大型语言模型的全面财务信息提取与结构化基准测试。不同于传统方法,它将XBRL标记分解为数值识别和概念链接两个子任务,能同时处理文本和表格数据。在零样本测试中,DeepSeek-V3和GPT-4o表现最佳,但在细粒度概念对齐方面仍面临挑战,揭示了当前大语言模型在自动化XBRL标记领域的局限性,为金融AI发展提供了新方向。
这项研究介绍了SweEval,一个新型基准测试,用于评估大型语言模型在企业环境中处理脏话的能力。研究团队从Oracle AI等多家机构的专家创建了一个包含八种语言的测试集,模拟不同语调和上下文的真实场景。实验结果显示,LLM在英语中较少使用脏话,但在印地语等低资源语言中更易受影响。研究还发现较大模型通常表现更好,且多语言模型如Llama系列在处理不当提示方面优于其他模型。这项工作对企业采用AI技术时的安全考量提供了重要参考。
这项研究提出了"VeriFree"——一种不需要验证器的方法,可以增强大型语言模型(LLM)的通用推理能力。传统方法如DeepSeek-R1-Zero需要验证答案正确性,限制了其在数学和编程以外领域的应用。VeriFree巧妙地计算正确答案在模型生成的推理过程后出现的概率,作为评估和训练信号。实验表明,这种方法不仅能匹配甚至超越基于验证器的方法,还大幅降低了计算资源需求,同时消除了"奖励黑客"问题。这一突破将有助于开发出在化学、医疗、法律等广泛领域具有更强推理能力的AI系统。